AUTOMATIQUE ANALYSE ET COMMANDE DES SYSTÈMES LINÉAIRES ÉCHANTILLONNÉS

EPREUVE DE RATTRAPAGE

(Notes de cours et TD autorisées)

- Durée: 1,5 heures -

Exercice 1: (5 points)

On considère le système échantillonné de la figure 1.

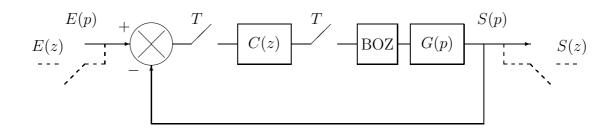


Fig. 1 – Un système échantillonné

Le procédé continu à piloter a pour fonction de transfert $G(p) = \frac{e^{-2p}}{p+1}$

La période d'échantillonnage est fixée à 1 s.

- 1.1) Calculer la fonction de transfert équivalente au procédé G(p) précédé du BOZ.
- 1.2) Calculer le gain statique du système en boucle fermée lorsque le correcteur C(z) est un correcteur proportionnel de gain K. Conclure sur la précision du système en BF.

Exercice 2: (13 points)

On considère le système continu de la figure 2.

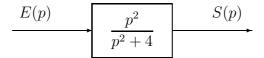


Fig. 2 – Un système continu

- **2.1)** Ce système est-il stable?
- 2.2) Calculer la réponse à un échelon unité et la tracer avec le plus de soin possible.

On échantillonne ce système suivant le schéma de la figure 3.

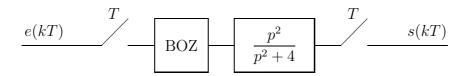


Fig. 3 – Système échantillonné

2.3) Calculer la fonction de transfert de ce système échantillonné¹.

A partir d'ici, on s'intéresse à l'influence de la période d'échantillonnage T sur la valeur des échantillons s(kT) fournis par le système échantillonné.

Pour les tracés des questions 2.2), 2.4c) et 2.5c), on adoptera la même échelle horizontale.

2.4) Pour
$$T = \frac{\pi}{4}$$
:

2.4a) Montrer que la fonction de transfert du système vaut $\frac{z(z-1)}{z^2+1}$.

 $^{^{1}}$ On l'exprimera en fonction de T qui n'est pas fixé pour l'instant.

- **2.4b)** Calculer la valeur des 6 premiers échantillons fournis par le système échantillonné en réponse à un échelon unitaire en entrée.
- 2.4c) Tracer la réponse échantillonnée.
- **2.5)** Pour $T = \pi$:
 - 2.5a) Montrer que la fonction de transfert du système vaut 1.
 - **2.5b)** Calculer la valeur des 6 premiers échantillons fournis par le système échantillonné en réponse à un échelon unitaire en entrée.
 - 2.5c) Tracer la réponse échantillonnée.
- 2.6) À partir de la comparaison des tracés des questions 2.2), 2.4c) et 2.5c), conclure.

Exercice 3: (3 points)

On considère le système continu de fonction de transfert $G(p) = \frac{2}{p^2 + 1}$.

- 3.1) « Numériser » ce système en utilisant la transformation d'Euler².
- **3.2)** Calculer l'équation récurrente reliant les échantillons de sortie et les échantillons d'entrée du système numérique calculé à la question **3.1**).

 $[\]begin{array}{ccc} 2 & & p \to \frac{1-z^{-1}}{T} \end{array}$

z-Transform Table

Laplace Transform	Time Function	z-Transform
1	Unit impulse $\delta(t)$	1
$\frac{1}{s}$	Unit step $u_s(t)$	$\frac{z}{z-1}$
$\frac{1}{1-e^{-Ts}}$	$\delta_T(t) = \sum_{n=0}^{\infty} \delta(t - nT)$	$\frac{z}{z-1}$
$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$
$\frac{1}{s^3}$	$\frac{t^2}{2}$	$\frac{T^2z(z+1)}{2(z-1)^3}$
$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	$\lim_{\alpha \to 0} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial \alpha^n} \left[\frac{z}{z - e^{-\alpha T}} \right]$
$\frac{1}{s+\alpha}$	$e^{-\alpha t}$	$\frac{z}{z - e^{-\alpha T}}$
$\frac{1}{(s+\alpha)^2}$	$te^{-\alpha t}$	$\frac{Tze^{-\alpha T}}{(z-e^{-\alpha T})^2}$
$\frac{\alpha}{s(s+\alpha)}$	$1-e^{-\alpha t}$	$\frac{(1-e^{-\alpha T})z}{(z-1)(z-e^{-\alpha T})}$
$\frac{\omega}{s^2 + \omega^2}$	sin ωt	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
$\frac{\omega}{(s+\alpha)^2+\omega^2}$	$e^{-\alpha t} \sin \omega t$	$\frac{ze^{-\alpha T}\sin\omega T}{z^2 - 2ze^{-\alpha T}\cos\omega T + e^{-2\alpha T}}$
$\frac{s}{s^2 + \omega^2}$	cos ωt	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	$e^{-\alpha t}\cos \omega t$	$\frac{z^2 - ze^{-\alpha T}\cos\omega T}{z^2 - 2ze^{-\alpha T}\cos\omega T + e^{-2\alpha T}}$