UE CSy - module P3 ANALYSE ET COMMANDE DES SYSTÈMES LINÉAIRES ÉCHANTILLONNÉS

(Notes de cours et TD autorisées)

- Durée: 1,5 heures -

Exercice 1: (10 points)

On considère le système échantillonné de la figure 1.

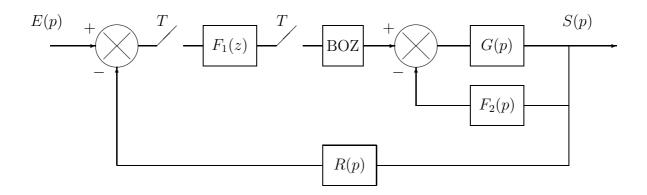


Fig. 1 – Un système échantillonné

- 1.1) Calculer la FTBF de cet asservissement¹ (si elle existe).
- 1.2) Doit-on rajouter des échantillonneurs fictifs sur le schéma-blocs de la figure 1 ? Si oui, combien ? Les représenter sur le schéma-blocs.

On prend:

$$F_1(z) = \frac{K_1 z}{z - 1}$$
 ; $G(p) = \frac{1}{p + 1}$; $F_2(p) = K_2$; $R(p) = K_3$

- **1.3)** Calculer la FTBF lorsque $K_1 = 2$, $K_2 = 3$, $K_3 = 4$ et T = 0, 1 s.
- 1.4) En déduire l'équation récurrente qui relie les échantillons de sortie aux échantillons d'entrée.

¹On pourra commencer par simplifier le schéma-blocs avant de se lancer dans d'éventuels calculs.

1.5) Calculer s(T), s(2T) et s(3T) lorsque l'entrée e(t) est une rampe de pente unité. On supposera que le système est initialement au repos.

Exercice 2: (5 points)

On considère le procédé $G(p)=\frac{1}{1+p}\,e^{-0.2\,p}$ inséré dans une boucle d'asservissement échantillonnée comme indiqué sur la figure 2.

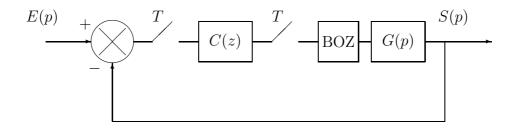


Fig. 2 – Commande numérique du procédé analogique G(p)

La fréquence d'échantillonnage est égale à 5 Hz.

Le correcteur numérique utilisé est un correcteur proportionnel de gain K.

2.1) En utilisant le critère de Routh-Hurwitz, calculer la condition que doit respecter le gain K pour que le système soit stable en boucle fermée.

Exercice 3: (5 points)

On considère le système numérique d'entrée u(k) et de sortie y(k) décrit par l'équation récurrente :

$$4y(k+1) + 4y(k) + y(k-1) = 4u(k) + 2u(k-1)$$

- 3.1) Calculer la fonction de transfert du système.
- **3.2)** Le système est-il stable?
- **3.3)** Calculer la valeur de régime permanent $y(+\infty)$ en réponse à un échelon de position d'amplitude unité (système initialement au repos).