AUTOMATIQUE ANALYSE ET COMMANDE DES SYSTÈMES LINÉAIRES CONTINUS

(Notes de cours et TD autorisées) Durée : 2h00

Exercice 1 (7 points):

On considère un système dont le diagramme de Bode est fourni sur la figure 1.

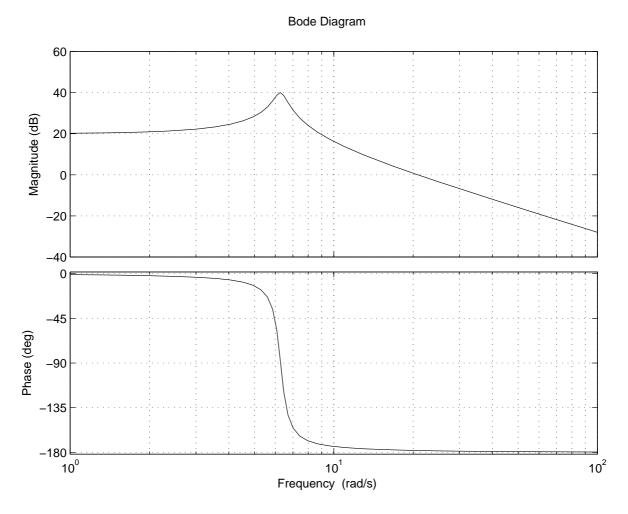


Fig. 1 – [EXERCICE 1] : diagramme de Bode

On applique en entrée un signal sinusoïdal de fréquence f (en Hz) et d'amplitude 10 V et, en régime permanent, on mesure une sortie sinusoïdale d'amplitude V_s (en V).

1.1) Compléter le tableau suivant :

f(Hz)	1	9.5	
V_s (V)			10

1.2) Quel est l'ordre du système?

Chaque réponse devra être justifiée.

Exercice 2 (6 points):

On considère la réponse à un échelon unité de la figure 2.

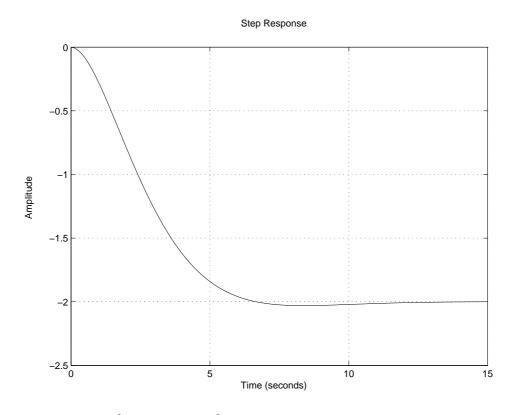


Fig. 2 – [EXERCICE 2] : réponse du système à reconnaître

Cette réponse correspond à un des 4 systèmes suivants :

$M_1(p)$	$M_2(p)$	$M_3(p)$	$M_4(p)$
$\frac{-0.7813}{p^2 + p + 0.3906}$	$\frac{-19.5312}{p^2 + 5p + 9.7656}$	$\frac{-3.125}{p^2 + p + 1.5625}$	$\frac{1.5626}{p^2 + p + 0.3906}$

2.1) Identifier le système qui a produit la réponse de la figure 2. Pour chacun des 4 systèmes, expliquer pourquoi vous choisissez ou rejetez le système.

Exercice 3 (8 points):

On considère l'asservissement suivant :

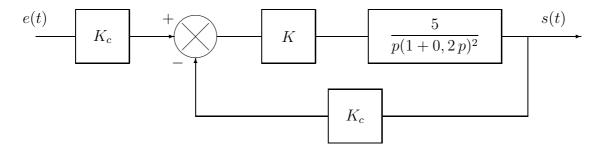


Fig. 3 – Un système asservi avec un correcteur proportionnel de gain K.

avec $K_c = 2$.

- **3.1)** Pour aider au réglage de K, calculez le gain limite de stabilité K_{lim} :
 - a) en utilisant le critère de Nyquist algébrique
 - b) en utilisant le critère de Routh.

La figure 4 correspond au lieu de Bode de la FTBO tracé pour K=0.5.

- **3.2)** Donner la marge de phase et la marge de gain pour K = 0.5. Conclure sur la stabilité du système pour cette valeur de K. Comparer à la question **3.1)**.
- **3.3**) Déterminer graphiquement la marge de phase et la marge de gain pour K=2.
- **3.4)** Déterminer graphiquement la valeur de K qui confère au système bouclé une marge de phase de 45° . Donner la marge de gain correspondante.
- **3.5)** Calculer en fonction de K l'erreur de vitesse en réponse à une rampe de pente 1 en entrée.
- **3.6)** Que vaut l'erreur de vitesse pour K = 5?

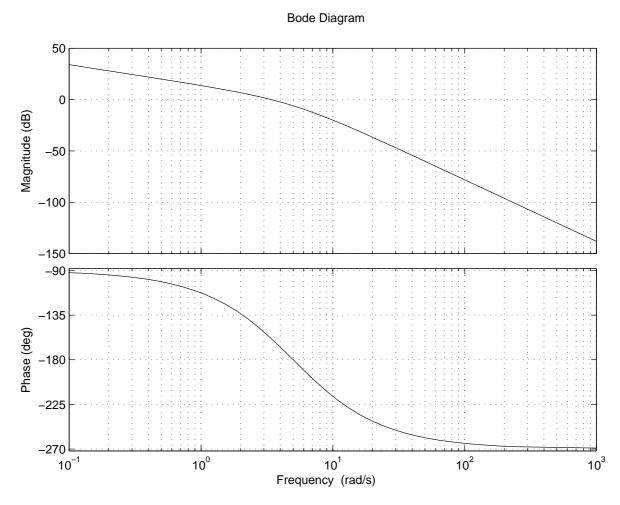


Fig. 4 – [EXERCICE 3] : lieu de Bode de la FTBO pour $K=0.5\,$