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ABSTRACT

Accurate numerical solutions for radiative heat transfer in two-dimensional axisymmetric black enclosures with non-gray sooting media have been obtained using three different methods. The ray tracing method together with the statistical narrow band model is used to obtain highly accurate solutions for benchmark purposes. The Monte Carlo method using a net exchange formulation and the statistical narrow band correlated k-distribution method yields also very accurate solutions, in excellent agreement with the ray tracing results. The discrete ordinates method combined with the correlated k-distribution method provides less accurate, but more economical, solutions, which are adequate for most practical applications. The solution accuracy of the methods is investigated and demonstrated, and results suitable for benchmarking are given in tabular form. 

NOMENCLATURE

A
- General radiative quantity dependent on the absorption coefficient

Aw,i
- Area of surface Si
Ci
- Volume or surface elements in the MC-NEF method

f
- Distribution function of the absorption coefficient

fv
- Soot volumetric fraction

g
- Cumulative distribution function of the absorption coefficient

I
- Spectral radiation intensity 
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- Radiation intensity for quadrature point j in a band of width i in direction m (DOM-CK method)
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- Mean spectral radiation intensity over a band of width i in direction k (ray tracing- SNB method)

J
- Number of quadrature points

k
- Parameter of the SNB model

k(g)
- Reciprocal function of g(k)

l
- Gas layer thickness

L
- Length

M
- Number of directions

n
- Number of control volumes

n
- Unit vector normal to the surface

N
- Number of solid angles

Nb
- Number of bands
Ns
- Number of surface elements

Nv
- Number of volume elements

N
- Number of polar angles per octant 

N
- Number of azimuthal angles per octant

p
- Total pressure

q
- Heat flux vector
qw
- Heat flux incident on the wall

r
- Radial coordinate

r
- Position vector

R
- Radius

s
- Coordinate along s direction

sij
- Distance from point Pi to point Pj
s
- Unit vector along the direction of propagation of radiation

S
- Numerical solution; Surface

T
- Temperature

U
- Uncertainty estimate

V
- Volume

w
- Quadrature weight for the DOM

x
- Axial coordinate; molar fraction

· - Parameter of the SNB model
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- Parameter of the SNB model


- Bandwidth


- Relative error estimator


- Polar angle


- Absorption coefficient

- Wave number

m
- Direction cosine


- Standard deviation

- Transmissivity
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- Mean spectral transmissivity over a narrow band from point i to point j

- Azimuthal angle
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- Net radiative exchange between surfaces Si and Sj
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- Net radiative exchange between volume Vi and surface Sj
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- Net radiative exchange between volumes Vi and Vj

- Quadrature weight of the CK method


- Solid angle

Subscripts

b
- Blackbody

c
- Coarse

CK
- Correlated k-distribution method

CO2
- Carbon dioxide

DOM
- Discrete ordinates method

f
- Fine

H2O
- Water vapor

L
- Lower

r
- Radial direction

RT
- Ray tracing

SNB
- Statistical narrow band

s
- Soot

U
- Upper

w 
- Wall

x
- Axial direction


- Wave number

Superscripts

m
- Direction
(
- Mean value

INTRODUCTION

Radiative heat transfer in participating media has a large number of practical applications (e.g., combustion chambers, fires, exhaust plumes, plasma flows) that justify the research and the significant progress that has been achieved in the last few decades. It is, however, a difficult problem, since the radiation intensity is, in general, a function of position, direction, wavelength and time, although the dependence on time is negligible for most problems. Even excluding time, there are six independent variables in three-dimensional geometries, and therefore analytical solutions are only available for a limited number of relatively simple problems, namely one-dimensional enclosures with a gray, homogeneous medium, and diffuse boundaries [1]. A few analytical or quasi-exact solutions are also available for relatively simple problems in two-dimensional rectangular/axisymmetrical and three-dimensional rectangular enclosures with gray media [2-7]. However, only numerical solutions are feasible in the case of reflecting boundaries, anisotropic scattering, complex geometries or non-gray media. Therefore, there is a need to develop accurate benchmarks that can be used to verify and validate numerical solutions of radiative heat transfer problems. In fact, the development of benchmark solutions has been identified as one of the five major research thrust areas at a workshop on the use of high-performance computing to solve participating media radiative transfer problems [8].

The Monte Carlo and the zonal method are generally recognized as accurate solution methods, and have often been used for benchmark purposes. In the case of gray media, where some analytical solutions are available, as pointed out above, benchmarks are particularly needed in the case of anisotropic scattering and complex geometries. Some well-known test cases have been proposed and solved by different research groups using different solution methods. Among these test cases are the cubic and the L-shaped enclosures with black walls, homogeneous or non-homogeneous media and a linear anisotropic scattering phase function. Reliable solutions for these cases have been obtained using different methods, such as the Monte-Carlo [9, 10], YIX [9, 11], direct exchange factors [12] and the REM [13]. 

In the case of non-gray media, very few reliable solutions are available for multidimensional problems. In the case of one-dimensional problems, the radiative properties of the gaseous medium may be calculated using a line-by-line method. However, such an approach is prohibitively expensive in multidimensional problems, and therefore approximate methods are needed to calculate these properties. This constitutes an additional source of uncertainty. Despite of this, radiative transfer in a finite axisymmetric enclosure containing a non-isothermal, non-homogeneous, non-gray medium was investigated by Zhang et al. [14] in 1988. They used a discrete-direction method along with the statistical narrow band model (SNB) and an ellipse correlation model. A well-known benchmark problem was proposed about one decade ago [15] for radiative transfer in a three-dimensional rectangular enclosure with homogeneous and non-nonhomogeneous media. The medium was taken as a mixture of carbon particles, CO2 and N2, with the spectral absorption coefficient of CO2 given by the Elsasser narrow-band model, and the scattering phase function of the particles given by a delta-Eddington function. Four different research groups using five different solution methods solved this problem, and large differences between the different numerical solutions were found. Since then, additional numerical solutions for this problem have been reported, e.g. [13, 16], including a modification for an L-shaped enclosure [9, 10, 12].

More recently, a ray tracing (RT) method along with the SNB model was used by Liu [17] to provide accurate solutions for three test cases in three-dimensional rectangular enclosures containing a mixture of H2O, N2 and, in one of the cases, also CO2. Both homogeneous and non-homogeneous media were considered. These test cases were taken as a benchmark in the calculations carried out by Coelho [18] to evaluate the performance of the discrete ordinates (DOM) and discrete transfer methods using different gas radiation property models, namely the weighted-sum-of-gray-gases (WSGG), the spectral line-based weighted-sum-of-gray-gases (SLW) and the correlated k-distribution (CK) methods. The third of these test cases was also used as a reference solution in the calculations reported in [19, 20] using the DOM and statistical narrow band correlated k-method (SNB-CK).

 A comparison of several methods for the calculation of the radiative properties of gases is presented in [21] for five problems in two-dimensional rectangular enclosures, encompassing homogeneous and non-homogeneous media containing H2O, CO2 or a mixture of H2O and CO2. It is concluded from this study that the SNB and the SNB-CK methods yield results in very good agreement with each other, and either of them can be used to provide a benchmark solution in the absence of line-by-line results. Calculations for a complex boiler furnace are reported in [22] using the same gas model and scattering phase function of the benchmark problem described in [15]. The temperature and species distributions were prescribed to resemble the conditions found in existing boilers. Narrow band and wide band results are compared. However, they are presented as heat flux contours, and are unsuitable for benchmark purposes. Recently, calculations for a two-dimensional complex geometry have been reported in [23] using the SNB-CK, SLW and CK models for various participating media. Some additional non-gray calculations in multidimensional enclosures have appeared in the literature. However, either the WSGG model was used [24-25] or the DOM S4 approximation was employed [26]. Although these methods may be adequate for many engineering applications, it is unlikely that they provide sufficiently accurate solutions for benchmarking.

The purpose of the present work is to contribute with new accurate benchmark solutions for radiative transfer in two-dimensional axisymmetrical enclosures with non-gray media containing soot particles. Apart from the few accurate solutions available for non-gray media in multidimensional enclosures, the motivation for the present work stems from the growing interest on natural gas as a fuel. This is due to reassessment of the long-term availability of natural gas, the development of highly efficient combined cycle gas turbine-steam plants, and lower CO2 emissions. Soot is generally present in the combustion of natural gas, but its concentration is relatively low, so that spectral effects inherent to gas radiation are still very important. Moreover, the soot particle size is sufficiently small, so that scattering may be neglected. 

The RT method along with the SNB is employed in the present work to provide benchmark results for black enclosures. The Monte-Carlo method using a net exchange formulation (MC-NEF) together with the SNB-CK method is also employed and shown to yield results in excellent agreement with those of the RT method. The SNB-CK method was chosen instead of the SNB, using the Curtis-Godson approximation, for two reasons. First, our code is based on a k-distribution formulation rather than a mean transmissivity one. Second, a comparison between the two models in a one-dimensional test case has been performed and shown an excellent agreement between the two models. This is consistent with all the comparisons between the SNB and the SNB-CK models reported in the literature for radiative transfer problems, which show very similar results [19-21, 27]. In addition, the results obtained using the DOM along with the CK model are compared with the benchmark solution. The DOM cannot be applied along with the SNB in multidimensional problems, unless the uncorrelated formulation is used [18], but this formulation may yield large errors. The CK model was chosen to be used together with the DOM because it requires less computing time than the SNB-CK. In fact, the DOM is expected to be less accurate and less time consuming than the MC-NEF, and therefore it is mainly used in applications where computational requirements are an important issue. 

 The methods employed in this work are reviewed in the next section. Then, the test cases are described, the results are presented, and their accuracy is discussed. Tables with the most relevant results are provided to enable interested readers to use them to validate their own results. The main conclusions are drawn in the last section.

THEORETICAL METHODS

Ray Tracing Method

The radiative transfer equation (RTE) in an emitting-absorbing non-scattering medium may be written as 


[image: image8.wmf]n

n

n

n

n

k

k

b

I

I

s

d

I

d

+

-

=


(1)

where I is the spectral radiation intensity,  is the spectral absorption coefficient of the medium, s is the direction of propagation of radiation, and the subscripts  and b denote wave number and blackbody, respectively.

In the ray tracing (RT) method the unit sphere centered at a point P in space or the hemisphere centered at a point Q on a surface boundary are discretized into a sufficiently large number of solid angles such that the radiation intensity may be assumed as constant within every solid angle. Here, each octant was divided into an equal number of azimuthal, N, and polar, N, angles. This type of discretization is commonly used in the finite volume and discrete transfer methods, but N and N are much greater in the present RT method to provide high accuracy. A quadrature set, as typically employed in the DOM, could also be used, provided that a high order quadrature were selected. The RTE is integrated analytically along each direction resultant from the angular discretization from the boundary surface to the point under consideration. Since the method is applied to black enclosures with prescribed surface and medium temperatures, the accuracy of the radiation intensity calculated at the point under consideration is only affected by two factors, namely the radiative properties of the medium and the integration error. If the medium is homogeneous, then there is no integration error, and the radiation intensity at points P or Q is given by
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where 
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 is the mean spectral radiation intensity over a narrow band, and 
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 is the mean transmissivity in that band for the distance from the boundary surface to point P (or Q) along the direction under consideration. The subscript w stands for the wall. If the medium is not homogeneous, the integration of the RTE yields (see, e.g., [27])
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(3)

This equation assumes that the path between points W and P (or Q) was discretized into n+1 points, which correspond to n control volumes. The first point is W, while the last one, n+1, is P (or Q). The temperature, species concentrations and soot volumetric fraction are assumed as constant within every control volume. Equation (3) could be recast in the form of a recurrence relation to compute the radiation intensity at a point i+1 from the radiation intensity at point i [28], but this is not needed for the present work.

The number of control volumes used in the spatial discretization, i.e., in the summation on the right side of Eq. (3), depends upon the direction under consideration. In the present work, and for every direction, the radiation intensity at point P (or Q) was computed for n = 10 and n = 20. Then, the ratio of the difference between these two radiation intensities to the radiation intensity calculated for n = 20 was evaluated. If this ratio exceeded a maximum allowable tolerance, taken as 10-4, then the calculations were repeated for n = 40, and the described criterion was checked again using the radiation intensities calculated for n = 20 and n = 40. This procedure was repeated, doubling the number of control volumes, until the convergence criterion was satisfied. This method was applied to all the directions.

The incident heat flux on a boundary surface, qw, is calculated as
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where N is the number of solid angles, Nb the total number of bands, n the normal to the surface, s the direction under consideration, and  a solid angle. The indices i and k stand for band and direction, respectively.

The divergence of the radiative heat flux vector, ((q, which constitutes the radiative heat source of the energy equation, is approximated as follows at the centerline (r = 0)
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where x and r were taken as sufficiently small values for numerical purposes. The heat flux components are given by
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where  and  stand for the polar and azimuthal angles, respectively, in a reference frame where the axial direction coincides with the x-axis.

As pointed out in [17], the RT method is too much computationally demanding for routine engineering applications, but it is appropriate to obtain very accurate solutions in black enclosures with a non-scattering medium. In this case, it can be applied to compute the incident heat flux or the radiative heat source at a single point without knowledge or calculation of the heat fluxes or heat sources at other points. In fact, in this work it was applied to obtain only the incident heat flux along the axial boundary and the divergence of the radiative heat source along the centerline. 

The radiative properties of the gas were calculated using the SNB model of Malkmus [29], which gives the mean transmissivity over a band of width and an isothermal, homogeneous gas layer of thickness l, at pressure p, as
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where k, 
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 and  are parameters of the model and x is the mole fraction of the absorbing gas. The parameters of Soufiani and Taine [30] were employed here. The Curtis-Godson approximation was used to deal with non-isothermal or non-homogeneous media. The spectral absorption coefficient of soot is calculated as 5.5  fv, with the wave number  in cm-1 and fv standing for the soot volumetric fraction. The transmissity of the medium is the product of the transmissivities of gas and soot. Additional bands were added to the gas bands to account for soot radiation near the visible region of the spectrum, where the gas radiation is negligible, but soot radiation is still relevant if the temperature is high enough.

Monte Carlo Method ( Net Exchange Formulation

The present implementation of the Monte Carlo (MC) method is based on a Net Exchange Formulation (NEF). The NEF has some common features with the zonal method from Hottel [31]. It has been first introduced by Green [32] in 1967 for atmospheric applications and more recently employed in one-dimensional radiative heat transfer problems [33, 34]. One of its main advantages is to allow an intrinsic satisfaction of the reciprocity principle. 

Let Pi be a point within volume Vi or surface Si and defined by the position vector rPi. The net radiative exchange between two volumes Vi and Vj,
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, may be expressed as follows for black walls and non-scattering media 
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where
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and n is the normal to the surface. The spectral transmissivity along the straight line between Pi and Pj  is given by 
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The wavenumber integrations in Eq. (8) are carried out over narrow bands, and the k-distribution method is employed within each band. According to this method, any radiative quantity A dependent on  is averaged over a band of width  as
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where f(k) is the distribution function of the absorption coefficient within the band [27]. This distribution function may be calculated as the inverse Laplace transform of the mean transmissivity over the band. In the present work, this mean transmissivity was computed using the Malkmus SNB model [29], yielding the distribution function originally proposed by Domoto [35]. The parameters of the Malkmus model were taken from the database given in [30]. In this way, Eq. (8) may be written as
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where Nb is the total number of bands over which the spectrum is divided, each one with width i. It was assumed that the blackbody radiation intensity is constant within a narrow band, and calculated at the band center.

In the case of non-homogeneous media, the correlated k-distribution method is employed [27]. In this method, the distribution function is integrated with respect to k to yield the cumulative distribution function g(k):
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Hence, the general radiative quantity A may be averaged as
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and Eq. (12) takes the following form:
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In the case of a medium with more than one absorbing species, the absorption coefficient of the medium is calculated as the sum of the absorption coefficients of gas species and soot. It is assumed that the distributions of the absorption coefficients for each gas are independent [36]. Therefore, the average of a general radiative quantity A dependent on the absorption coefficient may be expressed as follows for a mixture of H2O, CO2 and soot:
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The radiative source term for volume Vi is computed by taking into account the radiative exchanges between Vi and all the other volumes and surfaces
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where Ns is the number of surfaces and Nv the number of volumes. The net heat flux at surface Si is calculated as
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(18)
A Monte Carlo algorithm has been developed to calculate the multiple integrals in Eq. (15), as described in [33]. The use of statistical techniques provides the radiative source and the wall heat flux with an error estimate. To perform an efficient statistical computation in order to decrease the CPU time, probability density functions based on a physical analysis (such as temperature gradients, optical thickness, etc.) are used. These developments have been described in detail in [37], and show, for instance, the performance of the algorithm for a large range of optical thicknesses.

Discrete Ordinates Method

The DOM is based on the solution of the differential form of the RTE, whose basic radiative property is the absorption coefficient of the medium, while the narrow band model yields the mean transmissivity over a narrow band. In one-dimensional problems, the DOM can be used together with a narrow band model, as described in [28], but the extension to multidimensional enclosures is not feasible, unless a non-correlated formulation is employed. However, the non-correlated formulation often yields inaccurate results (e.g., [14]). Therefore, the CK method was used in the present calculations, instead of a narrow band model. Although this is less accurate than the SNB model, past work has shown that the results obtained using the CK method are still quite accurate.

 Detailed descriptions of the DOM and CK method are available in the literature, e.g. [1, 38, 39] and [27, 40], respectively. The application of the DOM together with the CK method has also been addressed in [18]. Hence, only the most important equations are given below for the sake of completeness. The RTE for a quadrature point j in a band of width i is given by
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The heat flux at surface x = constant and the radiative heat source are determined from
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where wm and j stand for the quadratures weights associated with the mth direction of the DOM and the jth quadrature point of the CK method, respectively, with 1 ( m ( M and 1 ( j ( J. The DOM calculations were carried out using the CLAM spatial discretization scheme [41] and a level symmetric SN quadrature. The CK data of Soufiani and Taine [30, 42] was used.

DESCRIPTION OF THE BENCHMARKS

Three radiative heat transfer problems in two-dimensional axisymmetric enclosures with black walls have been solved. Atmospheric pressure is considered in all cases. In the first two problems the enclosure has a length L = 3.0 m and a radius R = 0.5 m. The temperature of the walls is 300 K. The volumetric composition of the medium is 20% H2O, 10% CO2 and 70% N2. The soot volumetric fraction is 10-7. The temperature of the medium is 1200 K in problem 1 and 1800 K in problem 2.

Problem 3 has many similarities with one of the problems addressed in [14]. The dimensions of the cylinder are L = 1.2 m and R = 0.3 m, and the walls are at 800 K, except the right wall (x = L), which is maintained at 300 K. The temperature and the molar fractions of H2O and CO2 are given by
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The soot volumetric fraction is 10-7, like in the other problems.

RESULTS AND DISCUSSION

The incident heat flux on the circular wall and the divergence of the radiative heat flux along the centerline for problem 1 are shown in Fig. 1. The RT/SNB results, which were obtained using N= N= 200, are also listed in Table 1 for points uniformly spaced along the x direction, i.e., xi = (i-0.5) ( L / n, with n = 41 and 1 ( i ( 21. It is important to point out that the accuracy of the RT/SNB results depends only on the angular discretization (Nand N) and on the accuracy of the SNB method, but is independent of the spatial discretization for isothermal and homogeneous media. The DOM/CK calculations were performed using two different grids with 41(30 and 81(60 control volumes, and two different quadratures, S8 and S16. 

Figure 1 shows that the divergence of the radiative heat flux along the centerline exhibits an approximately flat profile, except in the neighborhood of the side walls (x = 0 and x = L), where a sharp gradient is found, because the walls are colder than the gas. The incident heat flux on the circular wall is also approximately constant far from the side walls, and decreases as the distance from the side walls decreases. Figure 1 demonstrates the excellent agreement between the RT/SNB and the MC-NEF/SNB-CK methods. The DOM/CK results, although less accurate, are still in good agreement with the RT/SNB results, and may be considered satisfactory for most practical applications. The spatial discretization has a minor influence on the DOM/CK predictions because the medium is homogeneous and isothermal. The refinement of the angular discretization improves the accuracy of the DOM/CK results.

To further examine the accuracy of the results, additional calculations were performed using the RT/SNB method with N= N= 25, 50 and 100. Such results are not graphically presented, since they are visually indistinguishable from the former ones. The relative difference between the RT/SNB solution calculated using one of these angular discretizations, denoted by subscript c (coarse), which may stand for N= N= 25, 50 or 100, and the solution calculated using the finest discretization, N= N= 200 in the present case, denoted by subscript f (fine), is taken as an estimator of the solution accuracy:
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Here, S stands for numerical solution and the subscript RT indicates ray tracing. The results obtained using the four different angular discretizations converge monotonically for points in the central region of the enclosure, but not for points in the vicinity of the side walls, where the largest gradients occur. Hence, the uncertainty estimate URT,SNB,c defined according to [43] was calculated. This uncertainty is based on the range of the maximum, SU, and minimum, SL, values among all the values from the coarsest, c, to the finest, f, angular discretizations
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If c = 25, then SU and SL are the maximum and minimum values among those computed from the four discretizations (N= N= 25, 50, 100 and 200); if c = 50, then SU and SL are calculated among three numerical solutions (N= N= 50, 100 and 200); and if c = 100, then SU and SL are calculated only from two solutions (N= N= 100 and 200).

The results summarized in Table 2 clearly demonstrate the convergence as the angular refinement is carried out, as well as the high accuracy of the calculated results. For example, the maximum relative difference between the solutions corresponding to the two finest angular discretizations is 0.003% for qw,x and 0.022% for (.q, while the maximum uncertainties are 0.0004 kW/m2 and 0.033 kW/m3, respectively.

The accuracy of the MC-NEF/SNB-CK solution is estimated from the standard deviation of the results, as reported in Table 2, and although the level of uncertainty is higher than in the RT results, it is still quite low, as expected from the results displayed in Fig. 1

The accuracy of the DOM/CK solutions is estimated from the relative error computed with the RT/SNB results for the finest angular discretization as the reference solution:


[image: image48.wmf](

)

100

%

,

,

,

,

´

-

=

f

SNB

RT

f

SNB

RT

DOM

DOM

S

S

S

h


(25)

The results listed in Table 2 support the analysis made from the observation of Fig. 1, namely the minor influence of the spatial discretization as compared with the angular discretization on the solution accuracy in this problem.

The error of the DOM/CK results may come from two sources, namely the DOM used to solve the RTE and the CK method used to calculate the radiative properties of the medium. In order to find out which source contributes the most to the error of the DOM/CK method, additional calculations were performed using the RT together with the CK method. The results computed using the RT/SNB and the RT/CK were compared using again the RT/SNB results for the finest angular discretization as the reference solution:
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Table 2 shows that the mean relative error coming from the gas radiative properties model is about 0.9% for qw,x and 0.7% for (.q. This value is approximately independent of the angular discretization. The difference DOM(%)-RT,CK(%) corresponds to the error that can be attributed to the DOM alone. Therefore, the DOM yields a larger error than the CK. However, the error due to the DOM decreases with the angular refinement, as expected, because the DOM converges to the exact solution as the spatial and angular refinements are increased.

The results obtained for problem 2 are shown in Fig. 2 and Tables 1 and 2. The only difference between this problem and the first one lies in the temperature of the medium, which has been increased. Therefore, the incident heat fluxes and the radiative heat source are higher in problem 2, but the profiles are qualitatively similar to those in problem 1. Also, the error analysis performed for both problems is similar, and therefore no further discussion is required.

The results of the last problem are shown in Fig. 3 and Tables 1 and 3. The divergence of the radiative heat flux at the centerline increases monotonically along the axial directions, following the increase of gas temperature. The incident heat flux increases up to x ( 0.9 m and decreases for larger values of x, due to the vicinity of the cold wall at x = L.

The RT/SNB calculations are much more time consuming in this problem than in the other ones, because the medium is non-isothermal and non-homogeneous. Therefore, the finest angular discretization used in the calculations was N= N= 100. Nevertheless, the results are again very accurate, as demonstrated by the relative error and uncertainty estimates given in Table 3. The region close to the side wall at x = 0 was excluded from the relative error estimates of the radiative heat source, because the source is close to zero in that region. The excluded region is that where |((q| < 5 kW/m3. 

The MC-NEF/SNB-CK results are in excellent agreement with the RT/SNB results, although the standard deviation is higher than in previous problems. This is particularly visible in Fig. 3(b), where error bars spanning the interval [SMC - MC, SMC + MC] are shown. The error bars have also been plotted in Figs. 1 and 2, but the interval is so small in those problems that the error bars are hardly distinguishable. The non-isothermal and non-homogeneous nature of the medium in problem 3 is the reason for the greater standard deviation. However, the mean values closely follow the RT/SNB results, as mentioned above. The DOM/CK predictions of the incident heat flux are rather satisfactory for both S8 and S16 quadratures. However, the errors of the radiative heat source along the centreline are also higher than in problems 1 and 2. In fact, the mean relative error is about 5% for S16 and exceeds 7% for S8, while maximum errors are about 9% and 21%, respectively. The radiation model (DOM) contributes more to these errors than the gas radiative properties (CK), as shown in Table 3. In fact, the errors from the two models yield DOM, while the second error is isolated in RT,CK. The contribution from the DOM to the total error (DOM) decreases as the angular quadrature is increased.

CONCLUDING REMARKS

Three problems of radiative heat transfer in two-dimensional axisymmetric enclosures bounded by black walls have been solved. The medium is a mixture of H2O-CO2-N2-soot at atmospheric pressure. The RT method with very fine angular discretizations and the SNB model have been used to obtain highly accurate solutions suitable for benchmarking. Since this method is prohibitively expensive for practical applications, another method that does not suffer from this limitation was used, namely the Monte Carlo method with the NEF along with the SNB-CK method. It was shown that the two methods yield results in excellent agreement with each other. Additional calculations were carried out using the DOM together with the CK method. Although less accurate, this method still yields satisfactory results for most practical purposes, and is more economical than the other ones. The accuracy of the results was investigated, and it was shown that the RT/SNB and MC-NEF/SNB-CK results can be used as benchmarks.
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	Problem 1
	Problem 2
	
	Problem 3

	x (m)
	qw,x
(kW/m2)
	(.q

(kW/m3)
	qw,x
(kW/m2)
	(.q

(kW/m3)
	x (m)
	qw,x
(kW/m2)
	(.q

(kW/m3)

	0.0366
	30.89
	234.73
	140.36
	1074.33
	0.0375
	24.22
	4.92

	0.1098
	35.92
	167.71
	164.86
	867.75
	0.0975
	24.59
	23.17

	0.1829
	38.61
	149.13
	178.87
	803.52
	0.1575
	25.05
	46.69

	0.2561
	40.35
	140.18
	188.29
	771.17
	0.2175
	25.57
	75.75

	0.3293
	41.57
	135.04
	195.03
	751.65
	0.2775
	26.17
	110.46

	0.4024
	42.46
	131.82
	200.02
	738.81
	0.3375
	26.82
	151.96

	0.4756
	43.11
	129.69
	203.79
	729.94
	0.3975
	27.52
	200.08

	0.5488
	43.61
	128.23
	206.68
	723.59
	0.4575
	28.26
	254.16

	0.6220
	44.00
	127.19
	208.94
	718.91
	0.5175
	29.03
	314.87

	0.6951
	44.30
	126.43
	210.70
	715.38
	0.5775
	29.81
	383.52

	0.7683
	44.53
	125.87
	212.10
	712.70
	0.6375
	30.59
	458.03

	0.8415
	44.72
	125.45
	213.20
	710.62
	0.6975
	31.30
	538.22

	0.9146
	44.87
	125.13
	214.09
	709.00
	0.7575
	31.93
	627.33

	0.9878
	44.98
	124.88
	214.79
	707.72
	0.8175
	32.40
	722.17

	1.0610
	45.08
	124.69
	215.34
	706.72
	0.8775
	32.61
	822.66

	1.1341
	45.15
	124.55
	215.77
	705.94
	0.9375
	32.46
	930.63

	1.2073
	45.21
	124.44
	216.11
	705.35
	0.9975
	31.76
	1045.89

	1.2805
	45.24
	124.36
	216.35
	704.92
	1.0575
	30.28
	1168.22

	1.3537
	45.27
	124.30
	216.52
	704.62
	1.1175
	27.71
	1298.52

	1.4268
	45.29
	124.27
	216.62
	704.44
	1.1775
	23.58
	1437.66

	1.5000
	45.29
	124.26
	216.65
	704.39
	
	
	


Table 1 – Incident heat flux on the circular wall and divergence of the radiative heat flux along the centerline calculated using the ray tracing method and the SNB model.

	
	
	
	Problem 1
	Problem 2

	Radiation Model
	Gas Properties Model
	Error

estimator
	qw,x

	(.q
	qw,x

	(.q

	
	
	
	Mean error
	Max. error
	Mean error
	Max. error
	Mean error
	Max. error
	Mean error
	Max. error

	RT
	SNB
	RT,SNB,25 (%)
	0.021
	0.049
	0.038
	0.177
	0.023
	0.064
	0.041
	0.228

	
	
	RT,SNB,50 (%)
	0.005
	0.006
	0.012
	0.094
	0.005
	0.007
	0.013
	0.106

	
	
	RT,SNB,100 (%)
	0.001
	0.003
	0.004
	0.022
	0.001
	0.003
	0.004
	0.030

	
	
	URT,SNB,25

(kW/m2, kW/m3)
	0.0045
	0.0074
	0.034
	0.347
	0.023
	0.044
	0.189
	1.868

	
	
	URT,SNB,50

(kW/m2, kW/m3)
	0.0012
	0.0014
	0.011
	0.101
	0.006
	0.007
	0.061
	0.553

	
	
	URT,SNB,100

(kW/m2, kW/m3)
	0.0003
	0.0004
	0.003
	0.033
	0.001
	0.002
	0.017
	0.184

	
	CK
	RT,CK,25 (%)
	0.89
	0.93
	0.73
	1.17
	0.88
	1.43
	1.02
	1.05

	
	
	RT,CK,200 (%)
	0.87
	0.91
	0.70
	1.18
	0.85
	1.21
	1.00
	1.03

	MC-NEF
	SNB-CK
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(kW/m2, kW/m3)
	0.063
	0.070
	0.886
	0.973
	0.234
	0.265
	3.021
	3.200

	
	
	
[image: image51.wmf]100

´

MC
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	0.153
	0.166
	0.642
	0.713
	0.119
	0.135
	0.397
	0.436

	DOM
	CK
	DOM,S8,c (%)
	3.43
	6.02
	4.18
	13.87
	4.05
	6.61
	3.70
	4.30

	
	
	DOM,S8,f (%)
	3.40
	6.30
	3.56
	10.53
	4.02
	6.91
	3.47
	4.14

	
	
	DOM,S16,c (%)
	1.98
	5.09
	2.40
	15.55
	2.51
	5.57
	2.14
	4.78

	
	
	DOM,S16,f (%)
	1.95
	5.21
	1.91
	11.97
	2.48
	5.65
	2.00
	3.12


Table 2 – Errors estimators for the incident heat flux on the circular wall and divergence of the radiative heat flux along the centerline for problems 1 and 2.

	Radiation Model
	Gas Properties Model
	Error

estimator
	qw,x

	(.q

	
	
	
	Mean error
	Max. error
	Mean error
	Max. error

	RT
	SNB
	RT,SNB,25 (%)
	0.053
	0.328
	0.032
	0.121

	
	
	RT,SNB,50 (%)
	0.020
	0.071
	0.008
	0.052

	
	
	URT,SNB,25

(kW/m2, kW/m3)
	0.009
	0.044
	0.072
	0.214

	
	
	URT,SNB,50

(kW/m2, kW/m3)
	0.003
	0.011
	0.015
	0.061

	
	CK
	RT,CK,25 (%)
	0.22
	0.53
	0.68
	1.54

	MC-NEF
	SNB-CK
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(kW/m2, kW/m3)
	0.56
	0.65
	4.61
	8.96
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	1.98
	2.42
	1.14
	2.50

	DOM
	CK
	DOM,S8,f (%)
	1.23
	5.94
	7.16
	20.71

	
	
	DOM,S16,f (%)
	0.52
	5.21
	4.88
	9.01


Table 3 – Errors estimators for the incident heat flux on the circular wall and divergence of the radiative heat flux along the centerline for problem 3.

FIGURE CAPTIONS

Figure 1 - 
Divergence of the radiative heat flux along the centerline and incident heat flux on the circular wall for problem 1.

Figure 2 - 
Divergence of the radiative heat flux along the centerline and incident heat flux on the circular wall for problem 2.

Figure 3 - 
Divergence of the radiative heat flux along the centerline and incident heat flux on the circular wall for problem 3.
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Fig. 1
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Fig. 2

[image: image64.wmf]a)

x (m)

DOM-S16/CK (coarse)

DOM-S16/CK (fine)

Ray Tracing/SNB

I

n

c

i

d

e

n

t

 

H

e

a

t

 

F

l

u

x

e

s

 

(

k

W

/

m

 

 

 

)

2

[image: image65.wmf]c)

x (m)

DOM-S16/CK (coarse)

DOM-S16/CK (fine)

Ray Tracing/SNB

R

a

d

i

a

t

i

v

e

 

H

e

a

t

 

S

o

u

r

c

e

 

(

k

W

/

m

 

 

 

)

3


[image: image66.wmf]x (m)

b)

Ray Tracing/SNB

MC-NEF/SNB-CK

I

n

c

i

d

e

n

t

 

H

e

a

t

 

F

l

u

x

e

s

 

(

k

W

/

m

 

 

 

)

2

[image: image67.wmf]d)

x (m)

Ray Tracing/SNB

MC-NEF/SNB-CK

R

a

d

i

a

t

i

v

e

 

H

e

a

t

 

S

o

u

r

c

e

 

(

k

W

/

m

 

 

 

)

3


Fig. 3
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